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4. Develop Storylines SL
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5. Calculate Probability and Impact of Storyline(s)
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3. Classify De-trended Data

Methods
1. De-trend Climate & Restriction Data

Remove the non-stationary 
impacts of climate change 
and adjust the data to 
'present' based on t' 
southern hemisphere land.

Define the climate states for each month in a way that 
can be passed to weather@home without incurring bias.

2. Define Climate States

Temperature Precipita�on 

Measure: Monthly mean 
temperature percen�le

 

Measure: Monthly mean soil 
moisture anomaly percen�le

 Cold Average Hot Wet Average Dry 
x <= 25th 25th < x < 75th x >= 75th x <= 25th 25th < x < 75th x >= 75th 

 

Classify each month 
of the detrended data 
into: Temperature 
Classes (Cold, 

Average, Hot) and Precipitation Classes (Wet, 
Average, Dry) based on the climate states (2).

A storyline is a user prescribed 
1+ year record of classified 
climate states (precipitation 
state and temperature state) 
and mean monthly irrigation 
restriction percentile for the 

given climate state (e.g. Hot-Dry-60th 
percentile restrictions). These storylines can 
be either user developed to investigate 
impacts of specific bespoke climate states 
(e.g., for impact analysis), or can be 
generated statistically (Markov chain Monte 
Carlo) to assess the cumulative impact 
probabilities of the current climate.

Results / Current Climate State

The non-exceedence probability and probability 
density function of annual pasture growth (left) 
provides an overview of the annual variance 
farmers can expect under the current climate 
state (2020-2030).  Dryland farm production is far 
more variable than the irrigated sites (as 
expected) but are largely Gaussian. Irrigated sites 
have a main Gaussian peak with a long, low 
productivity, tail. Farm systems are likely less well 
optimised for pasture growths that fall in this tail. 
We can expect events in this tail on average every 
1 in 5 years.

The distribution of monthly pasture growth (right) 
provides insight into the range of possible monthly 
impacts. Dryland farms show significant variation, 
particularly in Nov. and Dec. This suggests that increased 
monitoring on farms during Nov. and Dec. could provide 
farmers with an early warning of annual deficits. Irrigated 
farms on the other hand have the most variability 
associated with the later summer irrigation period (Feb. to 
Apr.). Note that the dryland and irrigated farms use 
different model parametrisations and are therefore may 
show different biases, which is why dryland farms may 
show a higher production in Nov. than irrigated farms at 
the same location. The BASGRA model does not do a good 
job of predicting the winter (Jun. - Aug.) pasture growth. 
The pasture growth variability is minimal at this time, so 
we simply set monthly average values.

Storage Mitigations
One of the most discussed on farm mitigation to climate 
extremes for irrigated farms is the inclusion of on farm storage. 
We modelled the impacts of on farm storage for 3 different 
storage scenarios (400, 600, & 800 m3/ha) on a range of 
different climate scenarios. The figure (right) shows the impact 
of storage at an Eyrewell 
farm on 100 storylines, 
which are, on average, a 
1 in 5 year low pasture 
production event (for a 
farm without storage). On 
farm storage may allow 
novel water allocation 
regimes (e.g., short term 
take secession to allow 
fish passage), but may 
raise other ecological 
challenges (e.g., winter 
takes to fill storage). 

Next Steps
1. Incorporate our pasture growth and on farm results into 
    regional macro economic modelling.
2. Investigate alternative and adaptive flow restrictions on a 
    generic braided alpine river to assess the economic, ecological, 
    and cultural impacts.
3. Communicate these results with interested parties including the  
    farmer panel.

Project Overview
Farming is vulnerable to financial shocks associated with extreme 
weather events. The likelihood of multiple extreme events occurring 
within a compressed period is increasing, but the impact of these 
events on the primary sector under current climate conditions has 
not been investigated. 

This poster summarises the methodology and findings of the first 
year of work on our two-year, multi-disciplinary, Sustainable Land 
Management and Climate Change (SLMACC) research project: a 
North Canterbury case study which aims to better understand the 
risk and impact of adverse weather and water availability sequences 
under current climate conditions. 

During this project we have engaged with a number of interested 
parties including local North Canterbury farmers to help develop our 
understanding and definitions of adverse events. The feedback we 
have received from farmers is that the current state of climate 
research, which focuses on mean impacts from long term changes 
(e.g., at 2050 and 2100), is not as important as the near-term 
climate shock events. The consensus from our farmers panel was 
that their planning window was often only up to 3 years ahead of 
present. 10–20 year changes in climate states were difficult to weigh 
up in comparison with other factors e.g., economic, environmental, 
and global demand. Therefore, we believe that our work can help 
farmers make good decisions within their planning time frame.

Tool Development
A major component of the project was developing a series of tools to produce synthetic weather and river flow data, to translate those data into 
pasture growth data, and to assess the probability of a given story-line. These tools have been tuned to North Canterbury Farms, but could be re-
tuned to other locations.

Pasture Growth 
Model (PGM)Infinite Improbability 

Drive (IID)

The Infinite Improbability Drive calculates the 
probability of a user specified set of monthly 
climate states and irrigation restrictions (i.e. 
a story line) occurring in any given year.

The pasture growth model used here is 
BASGRA_NZ_PY. Full details on the pasture 
growth model is available in the GitHub repo 
(https://github.com/Komanawa-Solutions-Ltd/
BASGRA_NZ_PY).  

1. Calculate transition probabilities 
Weather@home contains many realisations of 
different weather under the same climate.  This 
means there are enough realisations to adequately 
calculate the probability of any transition between 
monthly climate states. These transition probabilities 
can then be used to calculate the probability of any 
given story line.

2. Calculate storyline probability
1.  Calculate the probability of the first state of 
the storyline which is the product of:
    1.1. the probability of the climate state 
    1.2. the probability of restrictions being more        
           extreme than the storyline level (0-0.5).
2.  Calculate the probability of the next month 
which is the product of:
    2.1. the transition probability from the previous 
           month’s state to the current month’s state.
    2.2. the probability of restrictions being more 
           extreme than the prescribed restrictions 
3.  Repeat step 2 for every month in the storyline
4.  Calculate the final probability; the product of 
the probabilities calculated in steps 1-3.
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Daily processes

Set Climate 
state

Harvest
 if required 

(DM/Ha above 
threashold) 

Start Next 
Day

Irrigate 
if needed 

(soil moisture <= 
60%) to the extent 

needed (soil moisture 
= 75%) 

if available 
(up to 5 mm/day, less 
with restrictions unless 

there is storage)

Plant 
Processes

Stochastic Irrigation 
Restriction Generator (SIRG)Stochastic Weather 

Generator (SWG)
SWG

SIRG

The SWG produces daily climate variables for 
a storyline based on the detrended climate 
data at one or more sites while maintaining 
the intersite correlation. It also preserves the 
intra-monthly auto-correlation.

The SIRG produces daily irrigation restrictions 
(0-100%) for a storyline with a moving block 
bootstrapping of the detrended restriction 
record. This method preserves the distribution 
of restrictions across a month and the intra-
monthly autocorrelation.

Select n timeseries which match the specified mean 
restrictions (within user specified tolerance) 

2. Data generation

3. Data selection

Distribution Autocorrelation

1. Data generation
1.  Initialize the SWG (day 1) with a day picked 
     randomly from the binned data at each site
2.  Calculate the next day’s (day n+1) climate data 
     for site 1
     2.1. Determine whether the day is dry or wet
     2.2. If wet determine precipitation amount
     2.3. Calculate other climate variables
3.  Calculate the next day’s climate data for site 
     m+1 based on site 1
4.  Repeat steps 2 and 3 for day in the month
5.  Repeat steps 1-4 for each month in the storyline

3. Repeat steps 1 & 2 to create many 
realisations

2. Check data matches criterion
The SWG can produce data that does not match 
the storyline due to its random nature. Any such 
instances must be recalculated.

Many realisations are needed as any single 
realisation may be an extreme example of the 
storyline.

Produce a very large suite of 
data for each bin: 1. make a 
set of data blocks 2. randomly 
group the blocks 3. clip the 
grouped data to     
     the lenght of the month  4. 
calculate the mean   
     restriction level 5. redo 1-4 
many times with different sized blocks


