Using Bayesian inference to bridge the groundwater age divide: a lightweight data driven technique

National SCIENCE Challenges

> OUR LAND AND WATER

Toitū te Whenua, Toiora te Wai "Sucking the marrow from data"

<u>Matt Dumont</u>, Connor Cleary, Richard McDowell, Zeb Etheridge

A Thought Experiment

- Imagine a NO_3 time series for a Well

- We don't know the exact source area, but we have some suspicions.

- What can this well tell us about leaching concentrations in the source zone.

* A Chirality joke for the 1.5 hardcore chemists in the

audience

Can understand the source from the receptor?

Goal:

- Quantify the historical source concentration
- Predict future receptor concentrations

How? Let's set the scene

- Baseflow dominated hydrology
- History of intensification in some catchments, e.g. major forest to dairy conversion in Whakauru catchment in 2008-2009

MRT = 12, F_P1 = 0.7

How? How do we link source concentrations to the receptor?

Age Model: Exponential Piston Flow - fit from Tritium MRT = 12, $F_P1 = 0.7$

$$Conc_n = \sum_{a=0}^p Conc_a imes age \ percent_a$$

How? Consider all reasonable source concentrations (The Prior)

How? Let's select 1 and try it out

NOPE!

step

How? Let's select another and try it out

Better shape, but NOPE!

How? Let's select another and try it out

Not terrible!

How? Let's select another and try it out

Not terrible!

Best 50% params/pred: whaka5

… add some Bayesian magic ➡ THE POSTERIOR

Let's state the method assumptions

- 1. The source area remains static over time → you don't need to know where it is just that it's not changing
- 2. The age **distribution** is accurate
- 3. The age distribution does not change with time
- 4. The prior distribution includes the true source concentration

It's data driven and does not rely on other upstream models (like Overseer)

So just how complicated is this? (not perfectly to scale)

Example Problem 1 \rightarrow What the @#\$% is happening here?

Canterbury - Site: L36_0948

Source

Example Problem 1 \rightarrow What the @#\$% is happening here?

Now let's go for something a bit more *Majestic*

When are we sampling?

Canterbury constrained time

Example Problem 2 \rightarrow Where are we going?

Example Problem 2 \rightarrow Where are we going?

What will steady state NO₃-N be?

If we assume minimal changes: **median of 12.9 mg/l**

Stats Site = L37/0693 Region = Canterbury MRT = 46 $F_p1 = 0.5$

Best 20% params/pred: Canterbury_137_0693_akima_None_normal_base_v1_tuke

Reduction in NO₃ – N

Conclusions

- 1. Our BASE technique is can allow the user to:
 - a. Estimate the historical concentration of source zone (leaching area).
 - b. Give an estimate of the likely long term (steady state) concentration of a well.
 - c. Predict how changes in the source zone will affect concentrations in the well.
- 2. BASE is data driven and does not rely on upstream models like Overseer.
- 3. It is quick to run and is much more lightweight than other models (e.g., Modflow).
- 4. It can provide an independent parallel line of evidence for forward modelling.
- 5. Other information can be brought into the prior to test whether the prior is consistent with the observed data.
- 6. Open source python package (soon): https://github.com/Komanawa-Solutions-Ltd/komanawa-BASE
- 7. We are in the process of writing a paper on the technique.

Example Problem 3 \rightarrow Are these wells showing the same thing?

All: Best 20% params/pred: Coastal_Ashburton_Canterbury catchment_scale_Coastal_Ashburton_Canterbury_normal_v1_dilution_low

